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2 node tandem fluid queue

X,(t) is called an intermediate input

Xl(t) Clt — Yl (t) X2(t)

o pd

Ly (t)
La(t)
C1 L Co .
/ L |:> Cgt — Y2 (t)
node 1 node 2

Figure 1:The buffer content$;(¢), accumulated input&;(¢)
and outputs;t — Y;(t) at timet fori = 1, 2.
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What Is our interest ?

For the two node tandem fluid queue, we assume:
The second node also has an exogenous, input

The exogenous inputs are independent and subject to the
spectrally positive Levy process

Each node has a constant release rate.

We like to see how inputs influence its stationary distributions.
No closed form result is available
Decay rates are known for tBeownian inputs.

= Our Interest Is irexact tail asymptoticsof the stationary
distribution, particularly of the second buffer content.
« This Is different from the pure tandem queue.
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Background of this talk

This study is stimulated by

the recent work ofieshout and Mandjes (20Q8¥hich
considers the pure tandem fluid queue.

exact asymptotics on the double QBDMifyazawa (2009)

exact asymptotics on the random walk on a positive
guadrant ofoley and McDonald (2005)

Those papers apply technigues whichafierent from the
large deviations particularly, sample path large deviations.
We are interested in the above approaches because

exact asymptotics can be considered,
they might be applicable for a higher dimensional case.

No explicit result is known for more than 2-node networks.
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About the Lévy process

A real valued processX (t)} is said to ba-dimensional Lévy
process if it has independent and stationary increments, which
can be decomposed into the following three components.

at + aB( ): Brownian motion with drif and variance .

f |{z(A(du, dx) — duv(dx)) : Martingale with
Jumps not gr ater than 1.

JO(t) = [o [7 zA(du, dz) : Compound Poisson process
with jumps greater than 1,

where random measureis a pure jump component 6K (¢)},
and dui{dx) = E(A(du,dx)). vis called a spectral measure.

We assume that (X) only has positive jumpsThis may be
reasonable for input processes.
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Lévy exponent

The moment generating function of Lévy procegs).Xias the
following form.

E(e!X W) = etr0), RO < 0.

wherex(-) is called an Lévy exponent, and given by
1

K(0) = ab + 50292 + k90) + kL (8). (1)

where

k9 (9) = / (e’ — 1 — 0z)v(dx),
1 (0) = /1+ (e’ — 1)v(dx).

We put subscript for characteristics for node For example,
Xi(t), ai, 05, 54(0), 51 (0), 5, ().
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Sample path of the tandem fluid queue

For nodei, let X;(¢) be the accumulated input at tihe 0,
L;(t) be the buffer content anglae a release rate, then

Li(t) = L1(0) + X1 (t) — 1t + Y1 (1), (2)
Lo(t) = La(0) 4+ Xo(t) + 1t — Yi(t) — cot + Ya(t), (3)

where,Y;(t) is a nondecreasing process which regulatés fo

be nonnegative, and calledemyulator. Then,(L(t), La(t)) is
called a reflecting process generated by

(X1(t) — c1t, Xao(t) + c1t — cot) through reflection matrix

()1

SinceX;(t) has no negative\jumM(t) IS continuous int.
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Stationary equations

Let \; = £(X;(1)), and assume the stability condition:
A < cq, A1+ A2 < ¢y,

then the stationary distribution exists. Denote it by et
L = (L, Ly) be a random vector subject tpand define

p(01,0) = B(eM 08, 0(0;) = B, ( / MY (dt) ) (
whereF, stands for the conditional expectation giveft )L
havingr. Applying It0’s formula*® to (2) and (3), we have
Proposition 1 Foré;,6, <0,

V(b1,02) (01, 02) = (01 — 02)p1(02) + O2002(01), (4)

Where,’)/(el, 92) = 0191 -+ (CQ — 01)62 — /61(91) — IQQ(QQ).
« We can also uskéella-\Whitt martingale for this derivation.
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Rough and exact asymptotics

Since stationary distributiomis two dimensional, there may be
many ways to consider its asymptotics. We consider the tails of
L1, Lo, dy Ly + dy Lo, Whered;'s are positive constants.

We define their asymptotics in the following way. For positive

functiong(x) for z € [0, o),
1 1
a = — limsup — log g(x), a = —liminf — log g(x)
r—00 r—oo
are called upper and lower decay rateef g(x). If « =@ = q,
then «ais called adecay rate If there is a positive functioh

such that

lim le,

=0
then A x) is said to beexact asymptoticof g(x), and write it as

g(x) ~ h(z).
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What i1s known around this model

Brownian networks (BN) and Levy networks (LN)
Reflection map for BN Harrison and Reiman (1981)
LST for tandem LN — Kella and Whitt (1992)

LST for out-tree LN — Debicki, Dieker and Rolski (2007)
Sample path LD — Majewski (1998)
Rough asymptotics for 2 node BN

— Avram, Dai and Hasenbein (2001)

Discrete-time gueueing networks
Rough asymptotics for intree networks — Chang (1995)
Rough and Exact asymptotics for 2 node networks
— Borovkov and Mogul’skii (2001)

Already mentioned abouliieshout and Mandjes (2008), Foley
and McDonald (2005) and Miyazawa (2009).
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Our approach

Tail asymptotics of the stationary distributions of queueing
networks have been studied by

Sample path large deviatior]d,(3])

Spectra or convergence radi{iS]}.

Markov renewal theorem.

Complex analysis and/or local limit theorems.

Tauberial theorems when LST is know#]{.
Our approach dft] is close to the last one, but

1. we first find singular points through thenvergence
domain of the joint moment generating functian

2. then apply complex inversions for asymptotics dueZio |
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Stationary distribution of node 1
Let &, = 01in (4), then
(c16h — k1(01))p(01,0) = B1p1(0).

Thus, we hav@ollaczek-Khinchine formula:

£(01,0) = =200

(161 — K1 (61))
From this formula, if there exists, > 0 satisfying

(5)

C10X1 =— lil(Oél),

then ¢ is the rough decay rate 611, > x). Furthermore, if,
for somee > 0, k1 (0) is finite ford < a; + ¢, then

P(L1 >$)NO€_ 1

for some constar@ > 0 sincez = o4 Is a simple pole of the
analytic functiony(z, 0).
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Brownian input case: the domain ofy

For simplicity, assume thaf;(¢) is continuous in time, that is,
a Brownian motion. Let; = c; — \{, 79 = co — 1 — A9, then

1
’7((91,6)2) = 7“191 + 7“292 — 5(0’%9% + 0393),

and therefore stationary equation (4) becomes
1 2

(rz1 4 raz — 571 (21 + 0323))p(21, 22)
= (21 — 22)p1(22) + 2202(21). (6)

Thus, we have the following facts.

Lemma 1 The left side of (6) is an analytic function of two
variables <= ,(z) and @(z) areanalytic functions of z.

Remark:f(z1, 22) is said to be an analytic function of two
variable if f(z1, z5) is analytic for each;.
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Further auxiliary lemmas

From the stationary equation (6),

1
p1(02) = (50592 —12)p(0,02) + 11 + 13,

Since

5(0,0,) — p1(602) — 1(22)

7 = 222 is a removable singular point of0, z). Hence,

09

Lemma 2 ¢4(z) and L0, z) have the same singularity.

Lemma 3 ¢,(0) is finite ford < oy, wherea; = 23,

1

Remark 1 The domain ofp,(6) may be larger thaé < «;.
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ldeas for finding the domain

Let D= {0 € IR? »(f:,6,) < oo}, which is the convergence
domain ofp. How we can get it from stationary equation (6).

Boundary free kernel : Let Ty = {8 € IR*;~(0) = 0}.
Sincey(0) = r16; + 1905 — (03607 + 03603), Iy is ellipse.
Denote its inside by ['and outside by I.

Signs: Sincey(0)p(0) + (03 — 01)p1(62) = O2p02(0,), if
0 € I', andf, > 0, theny,(6;) is finite if and only ifp(0)
and g (6-) are finite, that isf € D. Furthermore,

0, < a; < p(01,0) < 0o = py(f) < co. Hence,

Ocl' ,0,>0,00<a;=0¢€D.

Check all combinations: I'j orI'; and the signs of
#y — 61 and 4, 2° = 8 cases in total are examined.
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Notation for the convergence domain

Sincevy(#,,605) = 0 is ellipse, we can define:
(077, 057%F) = arg max {#y; v(01,02) = 0},

(61,02)

(G?ﬂ“,egﬂn):: arg rnin-{92y7(91,92)22:0},
(01,02)

(1™, my"™) = arg max {0;;7y(01,06,) = 0},
(91792)

(Uinina né”i“) = arg min {91; W(Qh 92) — 0}7
(01,02)

(r1 +72)
o+ 05

§1(02) = min{0y; (01, 02) = 1},
§2(01) = max{fy;y(01,02) = 1}.

From the stability condition; > 0,7, + ro > 0, we haves > 0.

3 = max{0:(0.6) = 0} = -
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Shape of the convergence domain 1

Denote the interior db = {0 € IR*; p(0) < oo} by T°.The
following figures are for the case thak %041.

A 92 — 91 92
(51 (62)7 92) (92 - 91 max pmax
max pmax (91 792 )
(91 702 ) 6%) ‘
)
ﬁ /
2!
01
l a o /8 max max
v 21 1 (™™, m3" )
aq
(nmax’ nmax) \ 4 \ 4 \4 91
L B lay ar-p
V(01,02) =0 V(61,62) =0
(a—) B < 31 with ry <0 (a+) B < 301 with ry >0

The domainD° is under the bold face curves.
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Shape of the convergence domain 2

The following figures are for the case that & ce;.

02 02 - 01 02 max max 92
—I I (91 ,02 ) 02 - 01 max pmax
o Qo T (01 702 . )
(61(62). 92>/' 0l 02 = 0y
7(017 02) =0
91 / (TIinax7 n;nax)
\d Y 0
%ou 16} Qg ! @1 0,
l041 5}
7(017 02) =0
(b—) 1oy < B < ay with ry <0 (b+) $o1 < B < oy with 72 > 0 (c) ax <8

ne domain D’ is under the bold face curves.
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Answer to the convergence domain

Definea"** as

max
max L T2 Z O’
al - < max max
L 1 ) 772 < 07

Define the following twp sets..
Dl — {((91,(92) & BQ; (91 < Cklinax,(gg < 6§nax}7
D, = {(61,0,) € IR*;0, < 07,0, < 0.,

for some(#;, 85) such thaty(6;,6,) > 0}.
Then,

Proposition 2 If {X;(¢)}’s are Brownian motions, then the
interior of convergence domai = D, N D, (see Figure .

Remark 2 This result isstraightforwardly extended to the
Levy input casef x(0) is finite on a sufficiently large set.
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Asymptotics for the simple pole case

Let (0) € e F(x) dz for the tail of distributionF(z).

(S1) If ther
such that

rev, p, g satisfyingp < a < ¢ and integek > 1

(S1a) ¢ (z) is analytic forp < Rz < ¢ except forz = a,
(S1b) v (z) uniformly converges to s z— oo for
p <Rz < ¢, and the integrajl- [ e=®¥y)(q + iy)dy
uniformly converges for. > T,
(S1c) lim,_. (a — 2)*(z) = C for someC} > 0,
then

F(z) = Fc(;i)wk_le_fﬂ (14 0(1)),

wherel'(z) is the gamma function.
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Counter integral for the simple pole

} imaginary axis

real axis
>

« is the most left singular point
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Asymptotics for the branch point case

(S2) Ifthere arev > 0 and d< [0, §) such that
(S2a) ¢ (z) is analytic in the region:
G (0)={z€C,Rz>0,2z # a,|arg(z — a)| > d},
wherearg z IS the principal part of the argument of
complex numbet,

(S2b) ¥(z) — 0as k| — oo forz e G (6),
(S2c) for some constaif and non integer real number
(z) = K 1(s > 0) — Cy(a — 2)° + o (o — 2)°),
forg () > z — «,
where K must bey(a) if s > 0, then
5
['(—s)
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Counter integral for the branch point

A 1maginary axis

real axis
>

« is the most left singular point
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The Brownian input case

Theorem 1 P(L, > z) has the following exact asymptotics.
(1a) 8 < ta; = h(z) = Che” ™.

(2b) Lo, = 8= h(z) = Coar—ze %2,

(3c) sa1 < 3= h(z) = Cyx2e 0™,

where(, C5, C'5 are positive constants obtained in terms of
©p2(0), and

27“1 (7“1—|—7°2) 1 0'%
ap=-—, p= ;05 = g [ S
! 0% b= Jl—i—ag ° 03 ? ° 10%

Remark 3 These three cases corresponds with those of a
two-dimensional skip free and reflected random walk on the
nonnegative integer quadrant (called a double QB[B]in but
h(x) = Cxe~ " occurs in the latter case
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The Lévy input case

Proposition 3 If v(6,60) = 0 has a positive solution, denoted by
3, In addition to some finiteness conditionsygrthen, letting
o = £(05*), we have

(2a) If3 < 07, then [ e “P(Ly > u)du ~ Ciz.

(2b) If 8 =67, then [ e”™"“P(Ly > u)du ~ 20,22,
(2c) If 3 > 07, then [~ %™ “P(Ly > u)du ~ 2017z,
Here,f(x) ~ g(x) if lim, .. f(x)/g(x) =1, and

Cy = al) —and G = el [0,

(gll( )_1)(/%2( )—T ) T29max
kL )—r max R (Omax
Wheregi (/8) - 7"12£l%)1( 2) and %’(91 ) — (Q(Qma)x)1 and

05 (2 (012)+(65*% — 912 ) o (012
(Foo (652%) —r2022%) (952 —2x)2 | /—27€l] (702)
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Conjectures on the Lévy input case

Conjecture 1 P(L, > x) has the following exact asymptotics.
(3a) 8 < ta; = h(z) = Cie ™.

(3b) ta, = 8= h(z) = Cor—ze %2,

(3c) s < 3= h(z) = Cyr2e 0™,

where(, C5y, C'5 are positive constants.

Remark: IfP(Ly > z) ~ x%e~"* for someu, v, then Proposition
3 proves this conjecture.

Why is it difficult to prove the conjecture ?
To apply the complex inversion, we need to find the

function&; (z) which is implicitly determined by

1(&i(2),2) = 1

and analytic in some left-half plane.
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Remarks on extensions

The present formulation can be extendedterede network
with an-dimesional Lévy input and reflection matxsuch that

L(t) = L(0)+ X(t) —tRc+ RY (1),
whereR = I — P' for routing matrix I} X (¢) is the Lévy
processL(t) is a buffer content and {¥) is a regulator. Under
the stability conditiorl/ — P)"'E(X (1)) < ¢, the mgfy of the
stationary distribution oL (¢) satisfies

1(0)p(0) = (0, Re(0)), (7)

wherevy(0) = (0, Rc) — (0) with Lévy exponenk(8), and

©(0) = (¢1(6:[0]), . ... 0a(6,[0)))",
wherey;(0;|0]) = E, fol e Gil0LL(w) gV, (v).
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How to get the domain ofy ?

Let us consider the case that 3. In this case,
Y(0)0(0) = 711(0)p1(02,03) + 72(0)p2(01,03) + 73(0)p3(61, 02),
where

Vi(0) = 0; — (pin01 + pizba + pisbs), v =1,2,3.

Letting #; = 65 = 0 and rearranging the terms,

7(0)©(61,0,0) — 72(0)p2(01,0) — 13(0)p3(01,0) = 71(8)1(0,0),
Hence, by similar argumenrs, fér> 0,

7v(01,0,0) > 0= ¢(01,0,0), p2(6s,0),p3(0;,0) < o0.

7(0,62,0) > 0= ©(0,02,0),01(62,0), ps3(0,03) < .

7(0,0,605) > 0= ¢(0,0,603),©1(0,03), ps(0,05) < oo.

These are building blocks to find the convergence domain of
p(0).

Tail asymptotics for a Lévy-driven tandem queue with an intermediate input and its extensions — p.29/31



Problems

Exact asymptotics for the 2-node tandem fluid queue driver
by the Levy input.

Exact asymptotics in all directions for the 2-dimensional
Brownian and Lévy networks

Rough asymptotics for thedimensional Brownian and
Lévy networks.

One can reasonably conjecture the solutions for these problems
However, their verification would require

local limit theorems along the boundary faces,
Interference across boundary faces,

lower bounds for logarithmic tail probabilities.
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